A man of mass m is standing on the flat top of a cart of mass 2m. The length and height of the cart is L and H respectively and it is at rest on a smooth horizontal ground. The man starts running from end A, speeds up and jumps out of the cart at point B with a velocity u relative to the cart in horizontal direction. Calculate the total horizontal distance covered by the man by the time he lands on the ground.

Let displacement of the cart be $x \leftarrow b$ by the time man reaches the edge B. Since centre of mass of the system (Man + Cart) will remain at rest hence,

$$m(L-x)=2x$$

$$\Rightarrow x = \frac{L}{3}$$

 \therefore Horizontal displacement of man $= L - \frac{L}{3} = \frac{2L}{3}$

Let the man jump out with absolute velocity $v (\rightarrow)$

For momentum to remain conserved the velocity of cart must be $\frac{v}{2}(\leftarrow)$

A per question
$$u(\rightarrow) = v(\rightarrow) - \frac{v}{2}(\leftarrow)$$

$$u = \frac{3v}{2} : v = \frac{2u}{3}$$

Time of flight for the man from B to ground is $t = \sqrt{\frac{2H}{g}}$.

Horizontal distance covered = $vt = \frac{2u}{3}\sqrt{\frac{2H}{g}}$

... Total horizontal distance travelled from the start = $\frac{2L}{3} + \frac{2u}{3} \sqrt{\frac{2H}{g}}$